
J. Fluid Mech. (1998), vol. 361, pp. 309–331. Printed in the United Kingdom

c© 1998 Cambridge University Press

309

Dispersion of a ball settling through a quiescent
neutrally buoyant suspension

By J A M E S R. A B B O T T1, A L A N L. G R A H A M1,
L I S A A. M O N D Y2 AND H O W A R D B R E N N E R3

1 Los Alamos National Laboratory, Los Alamos, NM 87545, USA
2 Sandia National Laboratories, Albuquerque, NM 87185-0834, USA

3 Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA

(Received 11 July 1997 and in revised form 16 December 1997)

Individual falling balls were allowed to settle through otherwise quiescent well-mixed
suspensions of non-colloidal neutrally buoyant spheres dispersed in a Newtonian
liquid. Balls were tracked in three dimensions to determine the variances in their
positions about a mean uniform vertical settling path. The primary experimental
parameters investigated were the size of the falling ball and the volume fraction
and size of the suspended particles. Unlike the horizontal variances, the vertical
variances were found to be affected by short-time deterministic behaviour relating
to the instantaneous local configurational arrangement of the suspended particles.
For sufficiently long intervals between successive observations, the trajectories of
the balls were observed to disperse about their mean settling paths in a random
manner. This points to the existence of a Gaussian hydrodynamic dispersivity that
characterizes the linear temporal growth of the variance in the position of a falling
ball. The functional dependence of these horizontal and vertical dispersivities upon
the parameters investigated was established.

The dispersivity dyadic was observed to be transversely isotropic with respect to
the direction of gravity, with the vertical component at least 25 times larger than
the horizontal component. The vertical dispersivity D̂v (made dimensionless with the
diameter of the suspended spheres and the mean settling velocity) was observed
to decrease with increasing falling ball diameter, but to decrease less rapidly with
concentration than theoretically predicted for very dilute suspensions; moreover,
for falling balls equal in size to the suspended spheres, D̂v increased linearly with
increasing volume fraction φ of suspended solids.

In addition to the above experiments performed on suspensions of spheres, previ-
ously published settling-velocity data on the fall of balls through neutrally buoyant
suspensions of rods possessing an aspect ratio of 20 were re-analysed, and vertical
dispersivities calculated therefrom. (These data, taken by several of the present inves-
tigators in conjunction with other researchers, had only been grossly analysed in prior
publications to extract the mean settling velocity of the ball, no attempt having been
made at the time to extract dispersivity data too.) The resulting vertical dispersivities,
when rendered dimensionless with the rod length and mean settling velocity, showed
no statistically significant dependence upon the falling-ball diameter; moreover, all
other things being equal, these dispersivities were observed to increase with increasing
rod concentration.
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1. Introduction
Hydrodynamic forces govern particle–particle interactions in concentrated suspen-

sions at low Reynolds numbers. While the macroscale behaviour of the suspension
may be that of a hypothetical homogeneous Newtonian liquid, individual particles
at the microscale pursue chaotic trajectories about the mean (macroscale) particle
motion predicted on the basis of this hypothetical Newtonian fluid. In simple shear
flows with uniform shear rates, this leads to behaviour characterized by a self-diffusion
coefficient for the suspended spheres with no tendency towards non-uniform spatial
particle distributions (Eckstein, Bailey & Shapiro 1977; Leighton & Acrivos 1987a;
Nadim 1988). In contrast, for inhomogeneous shear fields such as Poiseuille flows,
the particles tend to migrate to the low-shear-rate regions of the flow (Gadala-Maria
& Acrivos 1980; Leighton & Acrivos 1987b; Graham et al. 1991; Abbott et al. 1991;
Phillips et al. 1992; Wang, Mauri & Acrivos 1993). Additionally, Ham & Homsy
(1988), Nicolai et al. (1995), Nicolai, Peysson & Guazzelli (1996) studied the motion
of a tracer particle in non-neutrally buoyant suspensions undergoing sedimentation.
A recent IUTAM symposium on the subject of hydrodynamic diffusion in suspensions
is summarized by Davis (1996).

This paper describes experiments that involve tracking the trajectory of a single
settling ball through an otherwise quiescent suspension of neutrally buoyant spheres
(in addition to the re-analysis of comparable data on rod suspensions). The discrete
nature of the suspensions was readily apparent from the ball’s motion when the ball
was of a size comparable to that of the suspended particles. Instead of ultimately
reaching (and subsequently maintaining) a constant terminal velocity, as in a true fluid
continuum, the falling ball settles erratically through the suspended particles, albeit
at a well-defined mean settling velocity, despite large fluctuations in its instantaneous
velocity. The chaotic portion of the observed behaviour results from hydrodynamic
interactions between the settling ball and the suspended particles, as well as from the
interactions among the suspended particles themselves. Periods of almost no motion,
occurring as the ball collides with and eventually moves around suspended particles,
alternate with periods of relatively high velocity, occurring as the ball settles through
the interstitial fluid between particles.

Davis & Hill (1992) proposed a theoretical model for the hydrodynamic dispersion
of a falling ball settling through a neutrally buoyant suspension of spherical particles.
Their model considers only two-body interactions between the settling sphere and a
suspended sphere, and, hence, is limited to dilute suspensions. Furthermore, it assumes
a priori that a random arrangement of suspended spheres will lead to a Fickian
process, wherein the average second central moment (variance) of the instantaneous
position of the settling ball increases linearly with time. Analogous to the molecular
diffusivity of Brownian particles in homogeneous fluids, a dispersion coefficient is
defined which is equal to one-half the slope of this variance with respect to time.
In addition to the prediction of a linear dependence upon solids volume fraction φ,
the dispersivity is further predicted by Davis & Hill (1992) to scale approximately
inversely with the size of the settling ball relative to the suspended spheres. Because of
the reversible nature of two-body interactions, their model predicts no net horizontal
excursions, and hence no horizontal dispersivity. Here, we focus experimentally on
the three-dimensional dispersion of a falling ball settling through a suspension of
neutrally buoyant spheres or rods.

Nicolai et al. (1996) performed experiments involving sedimenting suspensions,
wherein the spherical tracer particle (‘falling ball’) varied in both size and density
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relative to the sedimenting spheres. While they examined the fluctuating behaviour
of these tracer particles, their study focuses on balls that settled faster than the sedi-
menting suspension. However, the time scales of the settling ball and the suspension
were still comparable.

A principal objective of our experiments was to test whether the observed fluctu-
ations in the ball’s settling velocity could be interpreted as a Fickian process and,
if so, to extract from the trajectory data the functional dependence of the resulting
falling-ball dispersivities upon the various parameters characterizing the process. The
primary experimental parameters investigated were the sizes of the settling ball and
suspended particles, as well as the concentration and geometry (spheres vs. rods) of
the latter. Since the present data for the spheres were taken under more optimal
conditions than prevailed for the older rod data (Milliken et al. 1989a, b) – see § 4 of
the present paper, and since the later sphere data were taken using two horizontal
camera angles (so as to allow the measurement of horizontal dispervities in addition
to the vertical dispersivities) rather than a single camera angle, our focus and empha-
sis in the subsequent description will be on the sphere data. The rod data, while more
limited in scope (i.e. possessing sensors whose configration was such that only vertical
ball positions, and hence, ultimately, vertical dispersivities, could be measured) and
accuracy, will nevertheless be briefly commented upon in § 4.

For sufficiently long times the variances were observed to grow linearly with time,
as is characteristic of a Fickian process. Because the settling balls in these experiments
were comparable in size to the suspended spheres, it was possible to observe during
the course of a single experiment a temporal transition. Initially, the ball settled de-
terministically past a particular local arrangement of spheres, ultimately transitioning
to a random process arising from the ball settling past an ensemble of many such
local arrangements. Deterministic effects were observed to result in quadratic growth
of the variances, in contrast to stochastic effects, which resulted in linear growth.

Section 2 describes the experimental design for the sphere data. This includes a
description of the equipment and suspensions employed, as well as the experimental
protocol for determining the instantaneous position of the settling ball from two non-
collinear camera views. In optically transparent suspensions, wherein the refractive
index of the suspending fluid is matched with that of the suspended particles, the
falling balls were observed visually. For opaque suspensions, observations were made
using real-time radiography. In both cases the density of the suspending liquid
matched that of the suspended particles, so that no significant settling (or rising) of
the suspended particles occurred over the time scale of the experiments. A nonlinear
conversion algorithm was used to accurately determine the instantaneous three-
dimensional location of the centre of the settling ball from two orthogonal camera
views of its position.

Section 3 describes the experimental data reduction and interpretation for suspen-
sions of spheres. These new measurements of detailed settling paths were used to
determine variances in the three coordinates which define the centre of the falling
ball as a function of time. These trajectories served to determine the variances and,
concomitantly, to test the hypothesis that the dispersion phenomenon is, in fact, an
uncorrelated random process.

In an attempt to separate the long-term random processes from the shorter-term
deterministic effects, several numerical ‘experiments’ were performed and interpreted.
In these experiments a Fickian process was assumed to govern the motion of the
settling ball. In this manner an appropriate methodology was established for properly
sampling the experimentally measured trajectories.
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Because a purely Fickian process displays only linear growth of the variances with
time, any nonlinear behaviour – manifested by nonlinear growth of the variances –
would necessarily reflect the presence of additional physical processes. To account
for the nonlinear behaviour of the variances observed in our experiments, a model
incorporating a relaxation time is proposed to account for the experimentally observed
temporal behaviour of the falling-ball trajectories. Using physical arguments, the time
scale over which the short-term nonlinear behaviour is expected to be important is
estimated, and subsequently used to extract the long-term dispersivity from the raw
data. Also discussed are the methods employed for establishing error limits on the
variances and dispersivities.

Explicit results are presented in § 3 for the (non-dimensional) vertical and hori-
zontal dispersivities, D̂v and D̂h, respectively (made dimensionless with the falling
ball’s average settling velocity U and the diameter ds of the suspended spheres). In
particular, variances together with the resulting dispersivities are depicted graphically
as functions of falling-ball diameter df and density ρf , as well as of the volume con-
centration φ of suspended spheres. At moderate concentrations our measurements
revealed the existence of a small but measurable D̂h, which was at least 25 times
smaller than D̂v . The vertical dispersivity D̂v displays a variable dependence upon the
ratio df/ds of falling-ball to suspended-sphere diameter. At low solids concentrations,

D̂v depends almost inversely on the ratio df/ds. This dependence decreases with in-
creasing φ, until at φ = 0.50 the vertical dispersivity becomes almost independent
of df/ds. For circumstances where df/ds ≈ 1, D̂v increased approximately linearly
with φ.

Section 4, which deals with the older rod data, describes a method for estimating
the vertical dispersivity from the observed variations in settling velocity reported by
Milliken et al. (1989a, b) for suspensions of rods. Dispersivities obtained thereby were
observed to increase with increasing rod concentration, with no significant dependence
upon the falling-ball diameter. However, the latter was always less than the length of
the suspended rods.

Finally, § 5 provides a summary and discussion of our main conclusions.

2. Experimental method for sphere suspensions
2.1. Suspensions and apparatus

The suspensions employed in the experiments consisted of polymethyl methacrylate
(PMMA) spheres suspended in viscous Newtonian fluids. These particles were neu-
trally buoyant in the suspending liquid described below, and were sufficiently large to
assure that colloidal and Brownian forces could not appreciably affect suspension be-
haviour. Two separate suppliers furnished the PMMA spheres. The first set consisted
of Diakon MG102 particles (ICI-United Kingdom, London) with a mean diameter
of 675 µm. These were sieved, and the mean diameter of the sieved particles taken
to be the arithmetic average (655 µm) of the mesh sieve sizes on which the particles
were collected (600 µm) and that lying above it (710 µm). The resultant size distri-
bution of the sieved samples corresponded to a standard deviation of approximately
5% of the average sphere diameter. A suspension of these spherical particles in a
fluid whose material properties are described below was prepared at a solids volume
concentration of φ = 0.15.

The second set of spheres consisted of individually ground 3.175 mm diameter
spheres (Engineering Laboratories Inc., Pompton Lakes, NJ). Published tolerances on
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these larger spheres (±0.05 mm variation in diameter and ±0.025 mm in sphericity)
correspond to a standard deviation of less than 1% in the average sphere diam-
eter. Suspensions of these particles in the fluid described below were prepared at
concentrations of φ = 0.15, 0.30, and 0.50.

The fluid used in our experiments, which matched both the density and refractive
index of the suspended PMMA spheres, consisted of a mixture of 1,1,2,2 tetrabro-
moethane (TBE, Eastman Kodak, Rochester, NY), polyethylene glycol (90 000 UCON
oil, Union Carbide Corp., Danbury, CT), and alkylaryl polyether alcohol (Triton X-
100, J. T.. Baker, Phillipsburg, NJ). Relative proportions of each of these three liquids
were 14.07, 35.66, and 50.27% by weight, respectively. The fluid also contained about
0.1% by weight of Tinuvin 328TM (Ciba-Geigy Co., Ashley, NY) which was added to
the TBE as an antioxidant to prevent rapid discoloration of the fluid (due either to
ultraviolet light or contact with metals, especially iron alloys).

The fluid composition was such that the resulting density nominally matched
that of the PMMA particles, namely about 1.182 g cm−3. Once a solution was
prepared, the temperature at which the fluid density most closely matched that of
the particles was determined by finding the temperature at which a small sample of
the PMMA particles remained suspended. Use of an mgw Lauda RCS 20-D water
bath (Brinkmann Instruments Co., Houston, TX) enabled the temperature to be
controlled to within ±0.03 oC, making it possible to maintain a set of particles in
suspension for several days. However, PMMA particles of different sizes or shapes,
or from different batches, were observed to possess slightly different buoyancies than
the average. Nevertheless, during a 24-hour period the suspended particles did not
noticeably settle or rise.

The temperature at which our fluid density most closely matched that of the
particles was 22.95 oC, at which temperature the fluid viscosity was 4.52 Pa s−1.†
The Newtonian behaviour and resulting viscosity were verified using a Carri-Med
Controlled Stress Rheometer (TA Instruments, New Castle, DE). The refractive index
of this fluid (namely, 1.491) also matched that of the PMMA particles.

Suspensions were prepared by initially introducing the particles into the suspending
fluid and allowing them to settle slowly under their own weight prior to establishing
temperature control at the precise neutral-buoyancy point. This scheme served to min-
imize the introduction of air into the suspension. Subsequently, each suspension was
aggressively mixed so as to distribute the suspended particles uniformly throughout,
after which the suspension was set aside to allow any entrapped air bubbles sufficient
time to escape. Following this quiescent period the suspensions were remixed, care
being taken to avoid reintroducing any air bubbles.

Experiments were performed in covered cylindrical glass columns, 146 mm in inner
diameter and 558 mm in height. Vertical guide tubes were set into the centres of
the column lids. Their presence assured release of the falling ball along the axis of
the column. Columns were placed in a water-filled tank connected to a water bath
and temperature controller, and the suspensions allowed to thermally equilibrate for
at least 24 hours prior to performing any experiments. Temperature traverses in the
suspensions revealed variations of no more than ±0.03 oC within the viewing area.

The falling balls used in our experiments consisted of 3.18, 6.35, and 12.7 mm brass
spheres, as well as 1.59 mm tungsten carbide spheres (Ball and Roller Division of

† Professor M. Gottlieb (Ben Gurion University) was kind enough to test this fluid for viscoelastic
properties, thereby establishing its Newtonian nature under the conditions encountered in our
experiments.
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Hoover, Inc., Hartford, CT) and 12.7 mm aluminium spheres (Small Parts, Miami,
FL), whose respective densities were 8.56, 14.9, and 2.71 g cm−3.

2.2. Experimental procedure

It is difficult to overemphasize the care necessary to achieve reproducibility when
performing dispersion experiments. Previously established experimental protocols (e.g.
Milliken et al. 1989a), while furnishing reproducible settling velocities averaged over
a number of experiments, did not, however, yield reproducible variances. This was
evidenced by comparing the ratio of variances observed in two apparently equivalent
sets of dispersion experiments with a standard F-test value at the 95% confidence
limit. That the observed ratio consistently exceeded this 95% confidence value led us
to reject the hypothesis that the variances were equal. The source of the problem was
eventually traced to the fact that even small variations in temperature, causing only
1–2% differences in the average settling velocity of the ball, could cause differences
of as much as 60 to 200% in the horizontal and vertical dispersivities! To better
understand the source of these temperature variations and their impact upon the
measured dispersivities, the sequence of events composing an experiment will be
outlined, followed by a description of the protocol eventually adopted to obtain
reproducible variances lying within an acceptable range.

Prior to an experiment, the mass and diameter of the falling balls were determined
to within ±0.2 mg and ±0.005 mm, respectively. Subsequently, the ball was placed
into the water bath so as to allow it to thermally equilibrate with the suspension
prior to performing an experiment. Each experiment consisted of six phases: (i) ball
release; (ii) waiting for the ball to reach the viewing area; (iii) recording the ball
trajectory using the cameras and strobes; (iv) waiting for the ball to reach the bottom
of the cylinder after exiting the viewing area; (v) stirring the suspension; (vi) waiting
5–10 mins before repeating the cycle.

Temperature effects were established to be of extreme importance when measuring
the second moments of the ball position, especially at the lowest solids concentration,
where the magnitudes of the variations were small compared with the average
distance settled by the ball. Operating the strobes and stirring the suspension during
each experiment added thermal energy to the suspension. Accordingly, the first
few experiments performed at the beginning of each day (or after any break of
more than 20 min in performing the experiments) saw a rise in the temperature of
the suspension, ultimately reaching a higher steady-state temperature than existed
initially. This change in temperature was normally 0.1–0.3 oC. These temperature
fluctuations, in turn, affected the instantaneous ball-position measurements, creating
effects of sufficient magnitude to mask the dispersivities sought.

To reproducibly measure the second moments (say, to within 10–40%), the effects
of viscous and thermal heating accompanying each set of experiments were accom-
modated by physically simulating the experiments until the new higher steady-state
temperature appropriate to the actual experiment was reached. For each ball size at
each concentration, a few balls would be dropped to estimate how long the exper-
iments would last. Then, at the beginning of each day (or after any break in the
experiments lasting 20 min or longer), the suspensions were stirred and the strobes
activated for the appropriate amount of time, as if data were actually being taken.
This continued until a steady temperature was reached. Basically, this prevented data
from being taken during the temperature transients mentioned above, and resulted in
reproducible ratios within the standard F-test 95% confidence limits.

To track the settling balls, a high-speed video recorder (NAC’s HSV-400TM (Bur-
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Figure 1. An example of the apparatus used to track a ball settling
through a transparent suspension.

bank, CA)) was used. This recording scheme served to: (i) minimize systematic errors
in spatial and temporal resolution; (ii) allow similar data analysis procedures to be
used for both the transparent and opaque suspensions; (iii) store archival data for
future review. Displaying two synchronized images from separate cameras on each
frame, in combination with uniform spatial and temporal resolution of each image,
served to minimize systematic errors. The two cameras were placed roughly 90◦ apart
in a horizontal plane in order to achieve uniform accuracy in the two horizontal direc-
tions. A diagram of the experimental apparatus is shown in figure 1. Settling spheres
were tracked in camera coordinates using the built-in cursor generators situated on
the camera units.

2.3. Tracking algorithms

Determining the position of an object in three-dimensional space from two camera
images requires that the images fulfil three criteria, namely the existence of: (i)
an easily identifiable particle-locator point on each image; (ii) three independent
measures of the object’s position among the two images; (iii) a mathematical model
relating the independent measures to the actual position of the object. The centre of
the ball easily satisfies the first criterion, whereas the use of two non-collinear camera
views, which furnish four measures of the sphere’s position, fulfils the second. The
final criterion was satisfied by employing a variation of an existing model (Walton
1981). By using a reference object, this model relates the horizontal and vertical
positions of an object observed in two or more camera views (or its camera-fixed
coordinates) to the object’s physical position in laboratory-fixed coordinates. Because
Walton’s (1981) original model was developed for measurements taken in air, he was
able to assume linear optics. Here, we modified Walton’s model so as to account
for nonlinear effects arising from the non-refractive-index-matched interfaces existing
within our experiment.
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Systematic errors arise when studying refractive-index-matched suspensions as a
consequence of the non-index-matched interfaces existing between the following se-
quential elements: (i) the experimental liquid; (ii) the transparent cylindrical con-
tainer; (iii) the cooling fluid circulating around the cylinder; (iv) the transparent
cooling jacket; (v) the ambient air between the system and camera lenses. By using
a carefully chosen set of materials and fluids possessing the same refractive index,
the possibility exists of eliminating all non-index-matched interfaces, except for the
air/cooling jacket interface. Unfortunately, the latter interface, across which the largest
change in refractive index occurs, creates the largest nonlinear response. Accordingly,
it was deemed necessary to correct for this nonlinear response rather than attempt to
eliminate all possible non-index-matched interfaces.

In calibrating the linear model (Walton 1981), deviations between the measured
camera coordinates and those calculated from the known physical coordinates
(X,Y , Z) of the reference points, in two perpendicular planes, were observed to
be approximately quadratic in the physical coordinates. These errors were equivalent
to errors of 2 to 6 pixels in determining the object’s centre. (The transparent sus-
pension experiments were recorded using the HSV-400 TM system, which possessed
approximately 300 pixels of vertical resolution in the viewable area of interest.) By
adding quadratic terms to Walton’s (1981) model, the camera coordinates (T i, Ui) for
the ith camera (i = 1, 2) are given as

T i =
Bi1X + Bi2Y + Bi3Z + Bi4X

2 + Bi5Y
2 + Bi6Z

2 + Bi7
Bi8X + Bi9Y + Bi10Z + Bi11X

2 + Bi12Y
2 + Bi13Z

2 + 1
,

Ui =
Bi14X + Bi15Y + Bi16Z + Bi17X

2 + Bi18Y
2 + Bi19Z

2 + Bi20

Bi8X + Bi9Y + Bi10Z + Bi11X
2 + Bi12Y

2 + Bi13Z
2 + 1

.

 (2.1)

To determine the twenty unknown coefficients Bj appearing above, at least ten
reference points whose physical coordinates (X,Y , Z) are known are needed for each
camera view (for which the T i and Ui can be measured.) These points must be
non-coplanar, though they need not be the same points for both screens because the
equations for the camera coordinates are not coupled between cameras. However,
in our experiments evenly distributed points in two perpendicular planes were used.
These points spanned the common volume imaged by the two cameras.

Once the model was calibrated, determination of the three-dimensional position
(X,Y , Z) of an object from its camera coordinates, namely (T 1, U1) and (T 2, U2), was
achieved by rearranging the four resulting nonlinear equations (one set of the above
equations for each camera) into quadratic polynomials in X, Y and Z by multiplying
each set of equations by their common denominator. These new nonlinear equations
were solved using a standard Newton–Raphson technique to determine the best-fit
values of (X,Y , Z).

Twenty points were used to determine the unknown coefficients in equation (2.1),
following which an additional sixteen points were used to check the accuracy of the
algorithm. For a viewing area with a length of 100 mm, corresponding to 300 pixels
in the camera image, the new algorithm gave an accuracy of ±0.3 mm or about
0.3% of the total field of view. Errors of this magnitude are equivalent to an error
of one pixel or less in estimating the screen coordinates. Hence, this model appears
to correct for the systematic errors of 2 to 6 pixels encountered when using Walton’s
linear algorithm.

Our algorithm shares with Walton’s the ability to handle an arbitrary number of
camera views, provided that every point of interest always lies within view of at least
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Figure 2. A typical trace for a 3.2 mm ball falling through a suspension of neutrally buoyant
3.2 mm spheres, with φ = 0.50. The horizontal axis has been expanded for clarity. A cubic-spline
curve (the solid curve) has been fitted to the data.

two of the cameras. Within the resolution of cameras used, this algorithm accurately
locates the ball’s position without having to place the cameras in precise positions
and orientations relative to each other, or to the cylinder containing the suspension.
Although the cameras can be located at an arbitrary angle with respect to each
other, the best overall accuracy with two cameras is obtained from the conversion
routine via use of perpendicular images. With two roughly perpendicular camera
views, the two screens had in common one of the three physical directions. This
direction (the vertical Z-direction in our experiments) typically gave rise to a slightly
smaller uncertainty, since each camera measured the vertical position.

3. Analysis of fully three-dimensional paths
Establishing whether or not a ball settling through a neutrally buoyant suspension

behaves in a Fickian manner – and, if so, determining the concomitant vertical and
horizontal dispersivities – requires knowledge of the ball’s three-dimensional trajectory
as a function of time. It is clear from the example shown in figure 2 of a falling
ball’s trajectory that a ball does not generally settle uniformly through the suspension.
Because the ball’s path appears stochastic in nature, the moments of the ball’s settling
path were used to characterize the interactions of the falling ball with the suspension.

The first and second central moments of a ball’s trajectory are, respectively, repre-
sented by the vector

〈r̃(τ)〉 def
=

1

N

N∑
i=1

[r(ti + τ)− r(ti)] ≡ Ūτ (3.1)

and the dyadic

s2(τ)
def
= 〈r̃(τ)r̃(τ)〉 − 〈r̃(τ)〉〈r̃(τ)〉, (3.2)

with

〈r̃(τ)r̃(τ)〉 =
1

N − 1

N∑
i=1

[r(ti + τ)− r(ti)][r(ti + τ)− r(ti)], (3.3)

in which r = (X,Y , Z) is the instantaneous position vector of the centre of the settling
ball, r̃(τ) = r(ti + τ)− r(ti) is the vector displacement of r over the sampling time τ,
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and Ū is the mean settling velocity vector of the ball. For a purely random or Fickian
process, the dyadic s2 is related to the dispersivity dyadic D by the expression

s2(τ) = 2Dτ+ E , (3.4)

where E is the variance caused by experimental uncertainties in measuring ball
positions and times.

In using equations (3.1) and (3.4) all experiments performed for a given size of
settling sphere at a given concentration are assumed to be equivalent. Additionally,
taken collectively, the experiments are assumed to represent an adequate sampling
of the physical processes governing motion of the settling ball. Finally, the physical
process is assumed to be independent of the position r of the ball within the cylinder.
This last assumption is equivalent to assuming that wall effects can be ignored and
that the suspended particles are randomly and uniformly dispersed.

The validity of the first two assumptions is confirmed by the reproducibility of
the variances between two otherwise identical sets of experiments. Mondy, Graham
& Jensen (1986) showed that a suspension can be treated as an effective Newtonian
fluid continuum insofar as the average falling-ball settling velocity is concerned;
moreover, Newtonian wall-effect corrections derived for homogeneous fluids (Happel
& Brenner 1983) were also shown by Mondy et al. (1986) to be equally appropriate
for suspensions. As the instantaneous settling velocity of a ball through a Newtonian
fluid contained in a circular cylinder depends upon the radial position of the ball
(Hirschfeld, Brenner & Falade 1984), variations in its horizontal position necessarily
give rise to concomitant variations in its vertical settling velocity. However, the
magnitude of these variations for a ball one-third of the distance from the centreline
to the wall was estimated to be less than 1% for the range of falling-ball sizes used
in this study. As such, the contribution of these wall effects to the variances may
be neglected. For additional details relating to the validity of these assumptions see
Abbott (1993).

Because results for the three orthogonal directions should be (and were found
to be) independent of each other, only the diagonal terms in the dyadic variance
are non-zero. Furthermore, since the dyadic variance is, by symmetry, transversely
isotropic with respect to the direction of gravity, it is necessarily of the form

s2 = izizs
2
v + (ixix + iyiy)s

2
h, (3.5)

where (ix, iy, iz) are unit vectors in the respective (X,Y , Z) directions, and the scalars
s2v and s2h represent the respective vertical and horizontal variances.

Although equation (3.4) holds for a Fickian process, any physical process is neces-
sarily deterministic rather than random when viewed on a time scale short enough
to reflect the initial conditions. And on this time scale the variance will necessarily
display quadratic temporal growth. On an intermediate time scale, however, a transi-
tion occurs between this short-time quadratic behaviour and the asymptotic long-time
linear behaviour. (See equation (3.10) et seq.)

The following subsection describes how the vertical and horizontal variances were
determined from the ball trajectories. Subsequently, a scheme is outlined indicating
how the corresponding dispersivities were determined from these data.

3.1. Determining the variances

Each experiment consisted of tracking a falling ball and recording its position at
prescribed time intervals as it traversed a fixed viewing area. Experiments for each
specified ball size and suspension concentration were replicated at least 100 times.
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Figure 3. Horizontal variance as a function of time for a 6.35 mm settling ball in a 30% suspension
of 3.18 mm spheres. The vertical lines represent 95% confidence limits about the two horizontal
directions. These data have been fitted by a linear temporal relationship to determine the dispersivity.

When all the data collected in this fashion were used in equation (3.2), in addition
to the short-time quadratic behaviour, a long-time decrease in the variances was also
observed. This long-time behaviour is caused by using all the data, which prejudiced
the sampling of the distribution.

Let tm denote the minimum time interval required for a ball to settle through
the viewing area. Sampling every ball’s trajectory only for this amount of time does
not, in any way, prejudice the sampling. However, a pseudorandom Gaussian model
used to simulate our experiments displayed the observed long-time decrease in the
variances after a time tp, where tp was chosen such that only 10% of the falling
balls took less time than tp to settle through the viewing area. Hence, this decrease
in variance constituted an artifact of the method used to analyse the experiments.
In our experiments, for a given falling-ball size and density, trajectory sampling was
normally done only until time tm, but never longer than time tp.

3.2. Dispersivity for uncorrelated data

Examination of the horizontal variances, typified by those shown in figure 3, reveal
these to be linear functions of time. This implies that successive displacements as a
function of time are uncorrelated, and hence independent of each other. As such,
these variances may be regarded as arising from a Fickian process. This graph is the
result of 100 ball trajectories, which was the minimum number of balls dropped.

With the positional data uncorrelated as above, the dispersivity Dh is defined as

2Dhτi + Eh = s2h,i(τ) + εi, (3.6)

where Eh represents an estimate of the experimental uncertainty, and εi the uncer-
tainty in the measured variances arising both from experimental uncertainty and the
random nature of the process. If these uncertainties are approximately Gaussian, the
uncertainty arising from the random nature of the process is then described by the
relative bounding values of χ2

0.025,ni
and χ2

0.975,ni
as 95% confidence limits, where ni is

the number of displacements used to form the average at τi.
Because the uncertainty in the variances is not constant, but varies as indicated in

equation (3.6), a weighted least-squares analysis is appropriate using weight factors of
Wi = (χ2

0.975,ni
/ni − 1). This is equivalent to minimizing the following expression with
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Figure 4. Horizontal dispersivity as a function of falling-ball diameter df for suspensions of
ds = 3.2 mm spheres with φ = 0.30 and 0.50. The most notable trend is that the dimensionless

dispersivity D̂h decreases with increasing df/ds. For φ = 0.15, horizontal variances were not
significantly different from the experimental uncertainties; therefore no horizontal dispersivities
could be calculated.

respect to Dh and Eh:
P∑
i=1

(2Dhτi + Eh − s2h,i)2W−2
i . (3.7)

3.3. Horizontal dispersivities

Use of equation (3.7) and the subsequent equation (4.2) (upon replacing the subscripts
v with h in the latter) allows the dimensionless horizontal dispersivities D̂h to be
determined as functions of df/ds and φ.

Horizontal variances observed for the various df/ds values investigated at φ = 0.15
did not differ significantly from the experimental error; consequently, no horizontal
dispersivities could be calculated at this concentration. However, as shown in figure 4,
horizontal dispersivities could be determined for φ = 0.30 and 0.50, at which con-
centrations the variances significantly exceeded the experimental error. In figure 4,
at each ball size ratio there are two data points, these being derived from each of
the two perpendicular horizontal directions. (For the two smaller falling-ball sizes
at φ = 0.50, the two data points appear as a single point in the figure owing to
their closeness.) The ball motions in each of these two directions were found to be
uncorrelated, i.e. independent. The resulting dispersivities agree with each other to
within experimental uncertainty, which verifies the transversely isotropic assumption
made in equation (3.5).

These dispersivities can be seen to decrease with increasing df/ds. A power-law fit
of the data yielded the following empirical relations:

D̂h = 0.00502(df/ds)
−1.27 (φ = 0.30), (3.8)

D̂h = 0.0108(df/ds)
−0.840 (φ = 0.50). (3.9)

3.4. Dispersivity for correlated data

Examination of the vertical variances, similar to those data shown in figure 5, revealed
a nonlinear functional dependence upon time for short times, thereby necessitating
use of a nonlinear model to determine the vertical dispersivity coefficient from these
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Figure 5. Vertical variance vs. time for a 6.35 mm diameter ball falling in a 30% suspension of
3.18 mm diameter spheres. The best fit of equation (3.10) is shown by the solid line.

data. The source of this short-time nonlinear behaviour lies in the deterministic phase
preceding that at which the random component of the overall process dominates.

The observed nonlinear behaviour did not arise from inertial forces in our ex-
periments, a fact that was verified by varying the density of the 12.7 mm diameter
settling balls in the φ = 0.50 suspension. In particular, by using aluminium and
brass spheres, it was established that the variances were statistically independent of
falling-ball density (when the times were rescaled with their respective average settling
velocities). This suggested that the source of the nonlinearity lay in the change in local
geometry of the suspension with time as the ball penetrated the suspension locally,
rather than being a rate-related phenomenon. In fact, we believe the relaxational time
scale quantifying this nonlinear behaviour to be the characteristic time needed for the
settling ball to change its local environment.

Even well-mixed suspensions of spheres display local fluctuations in suspended par-
ticle concentration. A falling ball encountering a dense cluster of suspended particles
is observed to suffer a marked decrease in its settling velocity. As a consequence, a ball
needs to settle through a distance equal to several ball diameters after encountering
the cluster before returning to approximately the same velocity it had upon originally
approaching the dense cluster. The time scale required for the ball to sample such
local concentration fluctuations is of the correct order-of-magnitude to explain the
deterministic effects observed in our variance data, as shown by the arguments ad-
vanced in the Appendix. The net effect of these arguments is to quantify the functional
dependence of the variances upon time by the following relaxation-time model:

s2v (τ) = 2Dvτ−
2Dv
α

[1− e−ατ] , (3.10)

with α−1 a relaxation time. Arguments outlined in the Appendix suggest that α should
scale with U/df . A best fit of the existing data to this model yielded

α ≈ 0.2U

df
. (3.11)

For short times (ατ � 1), equation (3.10) reduces to

s2v (τ) = αDvτ
2, (3.12)
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which represents a deterministic process, whereas for times such that ατ� 1,

s2v (τ) = 2Dvτ, (3.13)

which represents classical Fickian behaviour.
Use of equation (3.11) for α permits Dv to be estimated from any set of vertical

variances. Including the experimental error Ev in measuring the vertical positions,
together with the varying confidence limits bounding the measured variances, enabled
a weighted-least-squares curve to be fitted to the variances s2v as a function of time τ.
This is equivalent to minimizing J with respect to Dv and Ev in the following relation:

J =

P∑
i=1

{
2Dvτi −

2Dv
α

(1− e−ατi) + Ev − s2v,i
}2

W−2
i . (3.14)

To establish the confidence limits on Dv , a standard nonlinear technique (Draper &
Smith 1981) was used to determine the confidence limit on J . This limit (JF ) depends
on the minimum value (Jmin) of J and a function derived from the F-test. The result
is

JF =

(
1 +

2

n− 2
F0.05,2,n−2

)
Jmin. (3.15)

Here, F0.05,2,n−2 is the F-test value for the 95% confidence limit in comparing a sample
with two degrees of freedom (the model with unknowns Dv and Ev) to a sample with
(n − 2) degrees of freedom (the variance less the number of parameters fitted). By
varying Dv , the maximum and minimum values of Dv are then determined, which give
J = JF . While this confidence limit is not exact, the values of Dv , α and Ev that yield
the same value of J correspond to a single unknown confidence limit, which is near
the 95% confidence limit (Draper & Smith 1981).

As can be seen in figure 5, the nonlinear fit appears to overestimate the variance as
time increases. As previously remarked, the confidence limits on the variances are not
uniform, whence the deviations are not statistically significant when compared with
the errors relative to the confidence limits. Additionally, α has been assumed given
by equation (3.11). Were the coefficient α appearing in equation (3.10) empirically
determined anew for each experiment by the observed short-time behaviour, and
Dv by the long-time behaviour, the fit would be much better, albeit less rational in
conception.

3.5. Vertical dispersivity

Use of the nonlinear relationship (3.14) together with the estimated values of α given
by equation (3.11) enables the vertical dispersivities to be determined. Figure 6 reveals
that D̂v decreases with increasing size ratio df/ds at the smaller concentrations φ.

The lines shown represent the best-fit power-law relationships between D̂v and df/ds.
Davis & Hill’s (1992) theoretical analysis for dilute suspensions suggests a first-order
inverse dependence of the form

D̂v = 0.67φ(df/ds)
−1. (3.16)

This relation appears to be approximately true for the φ = 0.15 suspension, at least
when df/ds is of order one, because the experimentally determined relationship is

D̂v = 0.080(df/ds)
−0.93 (φ = 0.15). (3.17)

Since the φ = 0.15 suspension is not really dilute, and because of the approximate
nature of equation (3.16), exact agreement of our data with the dilute theory results is



Dispersion in a quiescent suspension 323

1

0.1

0.01
0.1 1 10

φ= 0.30

φ= 0.50

D̂v

df /ds

φ= 0.15

Figure 6. Dimensionless vertical dispersivity as a function of relative ball-to-particle size for various
particulate concentrations. The most notable trend is that the exponent quantifying the rate at which
the dispersivity decreases with relative size goes from near −1 for small φ, in accord with theory
for dilute systems, to zero or slightly positive for large φ. The error bars shown are based on the
nonlinear analysis outlined at the end of § 3.4, which assumes α to be given by equation (3.11).

not to be expected. As such, the slight deviation in the exponent from that predicted
by Davis & Hill’s (1992) calculation is not significant. From a nonlinear error analysis,
the value for the exponent lies between −1.46 and −0.67 within 95% confidence limits.

For the suspension composed of 3.18 mm spheres with φ = 0.30, an assumed
power-law relationship between D̂v and df/ds yields, as the best fit,

D̂v = 0.134(df/ds)
−0.76 (φ = 0.30). (3.18)

Here, the observed exponent differs significantly from the dilute theory predictions of
Davis & Hill (1992), as too does the pre-exponential factor, although the latter is of
the appropriate order-of-magnitude. Because the confidence limits on the exponent
are –1.13 and –0.5, the dilute theory could still be applicable.

At a solids concentration of φ = 0.50, and again for ds = 3.188 mm, D̂v appears to
increase slightly with increasing falling-ball size, although the possibility exists that
D̂v may be a constant. In figure 6, the best-fit line shown passing through the data is
given by

D̂v = 0.34(df/ds)
0.20 (φ = 0.50). (3.19)

The confidence limits on the exponent are respectively –0.08 and 0.5.
The error bars displayed in figure 6 were determined by the method outlined

at the end of the previous subsection. As that analysis assumes α to be given
by equation (3.11), it does not account for the possible failure of that equation to
correctly quantify α. Inclusion of the latter as an empirical parameter to be determined
experimentally would reduce the error bars significantly.

Figure 7, which depicts the effect of suspension concentration on vertical dispersivity
for the case df = ds = 3.2 mm, indicates an approximately linear increase of D̂v with
φ, as given by the expression

D̂v = 0.60φ1.08. (3.20)

This linear increase agrees reasonably well with Davis & Hill’s (1992) prediction. This
agreement is probably fortuitous at the higher concentrations, because the observed
size dependence is qualitatively different from that anticipated by their theory.



324 J. R. Abbott, A. L. Graham, L. A. Mondy and H. Brenner

1

0.1

0.01
0.1 1

D̂v

φ

Figure 7. Dimensionless vertical dispersivity as a function of volume fraction φ of suspended
spheres. Because the effect of size is non-uniform, results are shown only for the case where the
falling ball possesses the same diameter as the suspended spheres (df = ds = 3.2 mm.)

4. Analysis of previous experiments on rod suspensions
Average settling velocities of balls falling through both sphere and rod suspensions,

together with their deviations from the mean, have previously been reported over
a wide range of parameters (e.g. Fidleris & Whitmore 1961; Mondy et al. 1986;
Graham et al. 1987; Milliken et al. 1989a, b). Because the observed variations in
settling velocities are larger than can be explained by experimental errors, these varia-
tions may be regarded as systematic, and attributed to the ever-changing interactions
occurring among the falling ball and the neutrally buoyant suspended particles. These
previous studies represent many years of exacting experimental effort, and our initial
objective prior to undertaking the work described in the previous section was to use
these studies to estimate the vertical dispersivities. Pioneering sedimentation velocity
experiments by Fidleris & Whitmore (1961) on sphere suspensions failed to note
any variations in the measured settling velocities arising from the discrete nature
of their suspensions. Later work by Mondy, Graham and coworkers (Mondy et al.
1986; Graham et al. 1987), also on sphere suspensions, did not provide the rigorous
temperature control that we now know to be essential for performing reproducible,
physically meaningful dispersion experiments. The subsequent studies of Milliken et
al. (1989a, b) – the first for spheres and rods, and the second for rods alone – represent
over two man years of intensive experimental work, with only very small variations in
experimental conditions. The physical properties of the fluids, the suspended particles,
and the falling balls used in their experiments are described in detail in the latter two
publications.

To estimate the vertical dispersivity Dv from Milliken et al. (1989a, b), variances
s2v in the vertical position need to be related to the variances s2u in the settling
velocities. Variances in the falling ball’s settling velocity measured in those studies
arose primarily from variations in the time τ needed for the ball to settle across
the viewable area. Using these velocities to calculate the velocity variance over that
average settling time enables us to relate s2u to s2v by the expression

2Dvτ = s2v ≈ s2uτ2. (4.1)

Contributions from either experimental error or deterministic behaviour are assumed
to be small, and hence have been neglected in the above equation. It proves convenient
to define a dimensionless dispersivity D̂v as the ratio of the physical dispersivity Dv to
the mean settling velocity U multiplied by a characteristic length c of the suspended
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Figure 8. Using previously reported (Milliken et al. 1989b) values of the settling velocities (and their
confidence limits) for balls falling in suspensions of rods with φ = 0.02 and 0.125, dimensionless

vertical dispersivities D̂v were calculated as a function of df/l. No significant dependence of D̂v

upon df/l appears to exist. Note that the dispersivities fail to show a so-called ‘small-ball effect’,
despite the presence of such an effect in the apparent viscosity of the suspension as measured by a
falling ball in conjunction with Stokes law (Milliken et al. 1989a).

particles. For spheres this length is chosen to be the sphere diameter ds, whereas for
rods it is taken to be the rod length l. The variance in the settling velocity is thus
related to the dimensionless dispersivity by the expression

D̂v =
Dv

Uc
≈
(
s2u

U
2

)(
L

2c

)
, (4.2)

where L = Uτ is the average distance settled in time τ.
Use of the observed variances in settling velocities reported by Milliken et al.

(1989a, b) permits the vertical dispersivities in neutrally buoyant suspensions of both
spheres and rods to be estimated via equation (4.2). This technique failed, however,
when we attempted to apply it to suspensions of spheres because the reported sphere
data, taken from earlier papers, were not uniformly acquired with the same care
as were the rod data. Thus, we focused only on the rod data. From figure 8, the
non-dimensional vertical diffusivity D̂v of the ball falling in rod suspensions does
not appear to display any statistically significant dependence upon the settling-ball
size relative to the rod length, df/l, for the two rod concentrations shown. Vertical
dispersivities at other concentrations display similar behaviour.

From figure 9 the vertical dispersivity for suspensions of rods appears initially to
be proportional to the rod concentration. In preparing this plot we averaged all the
dispersion values measured, using different-size settling balls at a given concentration.
(From Milliken et al. (1989b) we know that only the data at the larger volume fractions
φ deviates significantly from a linear relationship between the relative viscosity µr
and φ. More explicitly, a plot (not shown) of D̂v vs. the specific viscosity (µr − 1)
reveals a linear relationship between D̂v and (µr − 1) over all concentrations.)

Two fundamental assumptions underlying the above analysis were that: (i) the time
τ of the several experiments for a given size of settling sphere was constant; (ii) the
dispersion process could be described as purely Fickian. The assumption that τ was
constant is included in the approximate nature of equation (4.1), whereas a test of
the second hypothesis was confirmed in the preceding section, at least for sphere
suspensions.
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Figure 9. Dimensionless vertical dispersivity vs. concentration (φ) for rod suspensions. This figure
is very close to figure 4 in Milliken et al. (1989a), which showed the relative viscosity µr of the
suspension to be linearly dependent upon φ over the entire range of values shown, except at the
largest value of φ.

5. Summary and discussion
In a fundamental sense our falling-ball, quiescent-suspension, dispersion results may

be likened to the classical Brownian diffusion results of Perrin (1909, 1910), the latter
pertaining to the irregular movement of colloidal particles through macroscopically
quiescent fluids. In particular, the stochastic motion manifested by each of these two
phenomena arises directly from the fact that the fluid through which the particle
moves is not a true continuum, but rather possesses a discrete or granular structure
at a ‘microscopic’ sub-continuum level. Indeed, these two types of experiments differ
in principle only in that the force animating the tracer particle is extrinsic in our
gravity-driven case whereas it is intrinsic in Perrin’s case, arising from the thermal
molecular motions of the sub-continuum entities themselves!

In the preceding sections we have demonstrated that the horizontal and vertical
fluctuations about the mean position of a ball settling through a quiescent suspension
of neutrally buoyant particles is a physically measurable random process, quantifiable
by a transversely isotropic Fickian-like dispersivity. Effects of the density and size of
the settling ball, as well as the volume concentration, size, and shape of the suspended
particles upon the vertical and horizontal components of the dispersivity dyadic have
been investigated.

5.1. Suspensions of spheres

Within experimental error, the path of a settling ball through a suspension of spheres
has been shown to be a Gaussian process for sufficiently long times. This holds even for
highly concentrated suspensions, where a fast Fourier transformation analysis (Abbott
1993) reveals no significant periodic motion of the falling ball (whose presence would
indicate concentration-induced spatially periodic ordering of the suspended spheres).
The magnitude of the vertical dispersivity in concentrated suspensions (with φ =0.30
and 0.50) has been found to be at least 25 times larger than the corresponding
horizontal component, yielding a highly skewed transversely isotropic dispersivity
dyadic. However, the fact that the horizontal variances in relatively dilute systems
(φ = 0.15) were not significantly larger than the experimental errors furnished a lower
limit on the ratio of vertical to horizontal variances of about 10.

Vertical and horizontal dispersivities have also been estimated by Nicolai et al.
(1996). However, in their experiments the suspended particles were (deliberately) not
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neutrally buoyant and hence underwent sedimentation. They reported their results as
a function of the ratio of the settling velocity of the tracer particle to the settling
velocity of a sedimenting particle. As this ratio increased, their results, however,
failed to be correlated by this single parameter. For a ratio of 7, the largest value
reported, they estimated the vertical dispersivity to be at least 50 fold greater than
the horizontal dispersivity at φ = 0.20. This was the only concentration examined in
their study; nevertheless, to the degree that a neutrally buoyant suspension can be
compared with a sedimenting suspension, their result agrees qualitatively with ours.

For short times the vertical variances in our experiments did not always initially
grow linearly with time, but rather displayed initial quadratic growth behaviour,
indicating that motion of the falling ball is deterministic for these short times. To test
whether inertial effects caused this anomalous non-stochastic behaviour, the density
of the falling ball was varied. Inertial effects were thereby excluded as the source of
the implied deterministic behaviour. Rather, the correlated behaviour implicit in the
nonlinear temporal variance data is believed to be related to the time interval it takes
for the falling ball to change its local particulate environment.

In order to separate the random and deterministic contributions to the observed
vertical variances, we hypothesized the existence of a relaxation time α−1, related to
the time scale on which the settling ball undergoes a sensible change in its particulate
environment. Because the settling ball tends to drag the suspended particles along
with it, this time scale was experimentally observed to be about 5 ball diameters
divided by the mean velocity of the ball. However, since this relaxation time does
not account for the relative size of the suspended spheres, it should be regarded only
as a first-order estimate, likely to be valid only when the falling ball and suspended
particles are of comparable size.

In suspensions of spheres the vertical component of the falling ball’s dimensionless
dispersivity D̂v was observed to decrease with increasing ball size at the lower con-
centrations studied. In moderately concentrated suspensions (φ = 0.15), the scaling
of this dispersivity with the relative size df/ds of the falling ball to the suspended
spheres agreed well with the dilute suspension theory of Davis & Hill (1992) for the
case where df/ds = O(1). As particle concentration increased, however, the functional

dependence of D̂v upon df/ds diminished, ultimately becoming either independent of
the size ratio at φ = 0.50 or increasing slightly. The transition between the dilute
and concentrated behaviour appears smooth, suggesting that as the concentration
of suspended particles increases the ball’s hydrodynamic interactions with the sus-
pension becomes increasingly dominated by particle/particle interactions in contrast
with ball/particle interactions. Finally, the dimensionless vertical dispersivity increases
approximately linearly with φ at constant df/ds.

Davis & Hill’s (1992) calculations for suspensions of spherical particles include
only two-body effects, and hence predict no horizontal dispersivity as a consequence
of the reversible nature of these two-body hydrodynamic interactions. As horizontal
variance estimates require accounting for three-body interactions (or irreversible two-
body interactions), horizontal dispersivities were not expected to be as large as their
vertical counterparts, nor to display the same functional dependence upon df/ds or
φ. Our experimental observations are consistent with these facts. Explicitly, the non-
dimensional horizontal dispersivity D̂h decreased with increasing ball size, although
at a rate that diminished with increasing particle concentration. However, the relative
effect was always greater than for the comparable vertical dispersivity D̂v . A trend
analysis (Abbott 1993) comparing the two dispersivities suggests that the magnitude
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of the horizontal dispersivity might actually exceed that of the vertical dispersivity for
sufficiently small size ratios df/ds. We suspect, however, that a different mechanism
exists for falling balls much smaller in diameter than the suspended spheres (Milliken
et al. 1989a), a phenomenon which would invalidate extrapolating our results into
that region.

5.2. Suspensions of rods

In suspensions of rods, D̂v appears to be independent of the size of the settling sphere.
For φ = 0.15, D̂v is about four times larger than the comparable value for spheres.
This comparison of dimensionless dispersivities is, however, based upon different
length scales, namely the respective rod length and suspended sphere diameter in the
two cases. Hence, while the factor of four is not overly significant (considering the
assumptions made in analysing the rod data), the fact that the length of the rods
replaces the diameter of the spheres as the characteristic length scale makes the actual
variances in rod suspensions (over the time interval required for a ball to settle a fixed
distance) about 40 times greater than for comparable sphere suspensions.

Considering the large role that the postulated deterministic behaviour plays in
estimating dispersivities from the variance data, one might question the reliability
of dispersivity estimates derived in this fashion. (For suspensions of spheres such
estimates did not display any consistent trends with respect to falling-ball size or sus-
pension concentration.) Two major reasons for having confidence in the rod results
are that: (i) the rod dispersivities were forty times greater than for spheres; (ii) the
diameter of the falling ball was always less than the length of the suspended rods. The
first reason allows small perturbations in experimental conditions (changes in temper-
ature, stirring methods, etc.) to be neglected, as they do not contribute significantly to
the measured dispersivities, while the second reason allows deterministic effects to be
neglected. To resolve this issue unequivocally, complete falling-ball trajectories would
have to be determined for suspensions of rods.

In rod suspensions, D̂v increases linearly with the specific viscosity of the suspen-
sion. Because the suspension viscosity for all but the highest concentration is also
approximately linear in φ, this trend parallels the theoretically predicted behaviour
(Davis & Hill 1992) for dilute suspensions of spheres.

This work was sponsored by the US Department of Energy at Los Alamos National
Laboratory under contract W-7405-ENG-36 with the University of California, at
Sandia National Laboratories under contracts DE-AC04-76DP00789 and DE-AC04-
94AL85000, and at MIT under contract DE-FG02-88ER13896. The authors gratefully
acknowledge partial support for this work by the US Department of Energy, Division
of Engineering and Geosciences, Office of Basic Energy Sciences.

Appendix. Derivation of equation (3.11)
Arguments are advanced in what follows in support of equation (3.11) as arising

from local inhomogeneities in the spatial distribution of suspended particles. To
model this behaviour consider the following force balance on the settling ball:

FB = FD + FA . (A 1)

Here, with an obvious choice of notation, FB , FD , and FA are respectively the body,
drag, and inertial acceleration forces; explicitly,

FB = mg, (A 2)
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Figure 10. The axisymmetric deformation relative to the ball’s motion of an initially spherical shell
of fluid around a falling ball (not shown) of unit radius. The fluid shell is initially concentric with
the ball, but twice the ball’s diameter. Different curves represent the deformation of the shell at
various times τ = 1
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the figure.

FD = 6πµaU, (A 3)

FA = m
dU

dt
. (A 4)

Our experiments correspond to the regime for which the inequality FA � FD holds.
Elimination of FA from equation (A 1) yields

U(t)

U
=

µ

µ(t)
. (A 5)

Here, U(t) represents the instantaneous velocity of the falling ball, whereas µ(t) and
µ are the local and average effective viscosities of the suspension, respectively.

As the falling ball encounters local fluctuations in suspended-sphere concentration
its resistance to motion necessarily varies too with the local instantaneous con-
figuration of suspended particles. Earlier workers demonstrated that, on average,
suspensions behave rheologically as hypothetical one-phase Newtonian fluids with
effective fluid properties (e.g. Fidleris & Whitmore 1960; Mondy et al. 1986). There-
fore, we assume that Stokes flow around the falling ball, as shown in figure 10, is a
valid model of the actual flow field in a time-averaged sense.

Consider the evolution in time of a spherical shell of fluid surrounding a ball settling
in a Newtonian fluid. As shown in figure 10, the initially spherical shell deforms and
elongates due to the no-slip condition imposed on the surface of the ball. Observe
that after the ball has moved 5 and 10 ball radii a significant fraction of the fluid
initially in the shell remains in the neighbourhood of the ball.

A series of calculations was performed to determine the rate at which a falling ball
‘forgets’ its local environment. Spherical shells of fluid whose centres were initially
coincident with the falling ball’s centre were subjected to Stokes flow (see figure 10).
Of course, not each location has the same relative effect upon the ball’s motion.
Therefore, each location was weighted with the net effect on the ball’s motion of
a suspended sphere at that location. Brenner et al. (1990), using the method of
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reflections, determined this weighting to be 1/r4, where r is the radial distance
measured from the centre of the falling ball. The results of these calculations reveal
that to a high degree of accuracy a falling ball forgets its local environment in an
exponential manner; that is,

µ(t)

µ
= 1− δe−αt , (A 6)

where α−1 is an undetermined time constant and δ represents the magnitude of the
viscosity fluctuation relative to the average viscosity; explicitly,

δ =
µ− µ(0)

µ
. (A 7)

This functional form (A 6) is invariant over a reasonable range of shell radii. Sub-
stituting equation (A 6) into (A 5) and assuming δ to be small compared with unity
yields

U(t)

Ū
= 1 + δe−αt . (A 8)

Upon defining the fractional velocity deviation

Ũ =
U(t)− Ū
δŪ

, (A 9)

it follows that

Ũ = e−αt . (A 10)

Note that rather general arguments in favour of (3.11) could have been given in
terms of the rate at which velocity fluctuations become uncorrelated (see, for example,
equation (175) of Chandrasekhar 1943), rather than relying upon the model detailed
in this Appendix.
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